Corneal thickness- and age-related biomechanical properties of the cornea measured with the ocular response analyzer.

نویسندگان

  • Aachal Kotecha
  • Ahmed Elsheikh
  • Cynthia R Roberts
  • Haogang Zhu
  • David F Garway-Heath
چکیده

PURPOSE The Ocular Response Analyzer (ORA) is a new instrument that measures the corneal biomechanical response (corneal hysteresis, CH) to rapid indentation by an air jet. CH is the difference in applanation pressures (P1, P2) between the rising and falling phases of the air jet. The investigation had two parts: a characterization study and a validation study. In the characterization study, the purposes were to investigate the intraocular pressure (IOP)-dependence of CH and to characterize the performance of the ORA. In the validation study, the purposes were to investigate the association between CH and both age and central corneal thickness (CCT) and the agreement between ORA and Goldmann applanation tonometer (GAT) IOP measurements. METHODS For the characterization study, data were collected from 105 untreated subjects (45 ocular hypertensive patients and 60 normal subjects; mean age, 60 years, range, 26-82). GAT and ORA measurements were performed before and after IOP lowering of one randomly selected eye with apraclonidine drops. The change in P1 and P2 (arbitrary units) in relation to change in GAT IOP was analyzed to calibrate the instrument. The relation between P1, P2, and CCT was explored and ORA IOP was derived from the analyses. For the validation study, ORA and GAT IOP and CCT were measured in 144 eyes of 144 untreated subjects (mean age, 58 years; range, 19-83). The characterization calculations were applied to the dataset and values of CH and ORA IOP were calculated. The relationship between CH and both subject age and CCT was determined. The associations between CH and CCT and between ORA and GAT IOPs, were investigated by linear regression analysis. The agreement between measuring devices was calculated. RESULTS In the characterization study, P1 changed by 6.41 arbitrary units for every 1-mm Hg change in GAT IOP. CH (P1 - P2) changed by -1.60 arbitrary units for every 1-mm Hg change in GAT IOP. For each unit change in P2, P1 changed by 1.27 units. From this association a new IOP-independent corneal factor was derived [P1 - (P2/1.27)] and is termed the corneal constant factor (CCF; mm Hg). ORA IOP normalized for CCF was defined as P2 - CCF (mm Hg). The CCF (mm Hg) was associated with CCT (micrometers) and with age: CCF = [(0.036 . CCT) - (0.028 . age)] + 1.06 (adjusted r2 = 0.34; P < 0.0001 for CCT, P = 0.007 for age). Normalized ORA IOP measurements were not associated with CCT. GAT IOP was associated with CCT and CCF-more strongly with the latter: GAT IOP = (0.03 . CCT)+1.52 (r2 = 0.06, P = 0.002); GAT IOP = (0.65 . CCF) + 4.5 (r2 = 0.13, P < 0.0001). The mean difference (95% limits of agreement) between GAT and normalized ORA IOP was 0.1 (-6.6 to +6.8) mm Hg. CONCLUSIONS The CCF describes an IOP-independent biomechanical property of the cornea that increases with thicker CCT and decreases with greater age. It is moderately strongly associated with CCT and yet explains more of the interindividual variation in GAT IOP than does CCT. Normalized ORA IOP measurements are not associated with CCT.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intraocular Pressure Measurements by Three Different Tonometers in Children with Aphakic Glaucoma and a Thick Cornea

Background: To evaluate the agreement in intraocular pressure (IOP) measurements by Ocular Response Analyzer (ORA) and Tono-Pen XL (TXL) with the Goldmann Applanation Tonometer (GAT) and to examine corneal biomechanical properties in aphakic glaucoma patients with a central corneal thickness (CCT) >600 µ. Methods: Thirty-six eyes of aphakic glaucoma patients (group 1) and 40 eyes of normal chil...

متن کامل

Ocular Response Analyzer to Assess Age-Related Biomechanical Characteristics of the Cornea in a Taiwanese Population

Purpose: To investigate biomechanical properties of the cornea as measured using a Reichert ocular response analyzer (ORA) in a Taiwanese population. Methods: Basic demographic data were recorded for 1875 Taiwanese subjects. Corneal hysteresis (CH), corneal resistance factor (CRF), central corneal thickness (CCT), Goldmann-equivalent intraocular pressure (IOPg), and corneal-compensated intraocu...

متن کامل

Ocular Response Analyzer

Until recently, corneal biomechanical properties could not be measured in vivo. The ocular response analyzer is a new, noninvasive device that analyses corneal biomechanical properties simply and rapidly. The ORA allows cornea compensated IOP measurements and can estimate corneal hysteresis (CH) and corneal resistance factor (CRF). It is designed to improve the accuracy of IOP measurement by us...

متن کامل

Evaluation of the influence of corneal biomechanical properties on intraocular pressure measurements using the ocular response analyzer.

PURPOSE The Ocular Response Analyzer (ORA) proposes to measure corneal biomechanical properties in vivo by monitoring and analyzing the corneal behavior when this structure is submitted to a force induced by an air jet. The purpose of this study was to evaluate the relationship between corneal biomechanical properties and corneal-compensated intraocular pressure (IOPCC) measurements as obtained...

متن کامل

Biomechanical properties of the cornea in high myopia

PURPOSE To determine corneal biomechanical properties in patients with high myopia. DESIGN Observational study. METHODS High myopia patients (n=45, age: 37.0+/-12.6 years) with refractive errors of spherical equivalent (SE) greater than -9.00D were recruited in this study along with healthy subjects (n=90, age: 33.7+/-12.4 years) with refractive errors of SE ranging from 0D to -3.00D. Only ...

متن کامل

Biomechanical parameters of the cornea measured with the Ocular Response Analyzer in normal eyes

BACKGROUND To evaluate the relationships between Reichert Ocular Response Analyzer (ORA) parameters corneal hysteresis (CH) and corneal response factor (CRF) and ocular dimensions, age and intraocular pressure. METHODS Two hundred and twelve eyes of 212 participants with no ocular pathology had CH and CRF measured with the ORA. Intraocular pressure (IOP) was measured with the Dynamic Contour ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Investigative ophthalmology & visual science

دوره 47 12  شماره 

صفحات  -

تاریخ انتشار 2006